

# ADQ-CDI-BB 2.5 Manual



**ALLDAQ** control and measuring systems

## **Imprint**

Manual ADQ-CDI-BB 1.5

Date: 12.05.2025

#### Manufacturer and support

ALLNET® and ALLDAQ® are registered trademarks of ALLNET® GmbH Computersysteme. For questions, problems and product information, please contact the manufacturer directly:

#### ALLNET® GmbH Computersysteme

Division ALLDAQ Maistrasse 2 D-82110 Germering

#### Support

E-Mail: support@alldaq.com
Phone: +49 (0)89 894 222 - 474
Fax: +49 (0)89 894 222 - 33
Internet: www.alldaq.com/support

© Copyright 2021 ALLNET GmbH Computersysteme. Alle Rechte vorbehalten.

All information contained in this manual has been compiled with the utmost care and to the best of our knowledge. Nevertheless, errors cannot be completely ruled out. Specifications and contents of this manual are subject to change without notice.

We are always grateful for notification of any errors.

Trademarks mentioned are registered trademarks of the respective companies.

## **Contents**

| 1. Introduction                            | 7        |
|--------------------------------------------|----------|
|                                            | 7        |
| 1.2 Safety instructions                    | 7        |
| 1.3 Installation and mounting              | 8        |
| 1.4 Brief description                      | 9        |
| 2. Overview of the system                  | 10       |
| 2.1 Digital inputs and outputs             | 10       |
| 2.1.1 Digital inputs                       | 10       |
| 2.1.2 Digital outputs                      | 12       |
| 2.1.3 Jumper CAN/UART/I2C                  | 14       |
| 2.2 Power measurement channels             | 15       |
| 2.3 Temperature measuring channels         | 16       |
| 2.4 Relay                                  | 18       |
| 2.5 Analog inputs                          | 19       |
| 2.6 Fan control                            | 20       |
| 2.7 ADQ-Link                               | 21       |
| 2.8 Power supply                           | 21       |
| 2.8.1 Internal power supply unit for DUT s | upply 21 |
| 3. Plug-on board (HATs)                    | 22       |
| 3.1 HAT1 (for example ADQ-CDI-AB)          | 22       |
| 3.2 HAT2                                   | 22       |
| 4. Control23                               |          |
| 4.1 ADQ-Link                               | 24       |
| 4.2 Single Board Computer                  | 25       |
| 5. Pin assignments                         | 26       |
|                                            | 27       |
| 5.2 Overview of plug connector Typees      |          |
|                                            | 27       |
|                                            | 28       |
| 5.3 Pin assignment                         | 28       |

| 6. Specifications                          | 39 |
|--------------------------------------------|----|
| 7. Appendix                                | 45 |
| 7.1 Manufacturer and support               | 45 |
| 7.2 Important notes                        | 45 |
| 7.2.1 Packaging Ordinance                  | 45 |
| 7.2.2 Recycling notice and RoHS conformity | 45 |
| 7.2.3 CE marking                           | 45 |
| 7.2.4 Warranty                             | 46 |

ADQ-CDI-BB 1.5 Introduction

## 1. Introduction

Please check the packaging and contents for damage and completeness before commissioning. If there are any defects, please inform us immediately.

- Does the packaging indicate that something was damaged during transportation?
- Are there any signs of use on the device?

Under no circumstances should you operate the appliance if it is damaged. If in doubt, please contact our technical customer service.

Please read this manual carefully before installing and programming the device!

## 1.1 Scope of delivery

ALLDAQ baseboard ADQ-CDI-BB (mounted in DIN-rail), connectors are included

## 1.2 Safety instructions



Please observe the following instructions:

- If voltages greater than 42V (VDE standard) are connected, the module may only be operated in a top-hat rail housing.
- The top-hat rail housing should only be opened by trained specialist personnel.
- Operation without a top-hat rail housing is only permitted if all voltages below 42V (VDE standards) are connected.
- Avoid touching cables and connectors
- Never expose the device to direct sunlight during operation.
- Never operate the appliance near heat sources.
- Protect the device from moisture, dust, liquids and vapors.
- Do not use the appliance in damp rooms or in potentially explosive atmospheres.
- Repairs may only be carried out by trained, authorized personnel.
- Please observe the installation regulations and all relevant standards (including VDE standards) when commissioning the device, especially when operating with voltages greater than 42 V.
- We recommend always connecting unused inputs to the corresponding reference ground in order to avoid crosstalk between the input channels.

Introduction 7

Introduction ADQ-CDI-BB 1.5



- Ensure that no static discharge can occur via the device when handling the card. Follow the standard ESD protection measures.
- Never connect the devices to live parts, especially not to mains voltage.
- Precautionary measures to avoid unforeseeable misuse must be taken by the user.

Note: Do not apply any voltage to the I/O pins before the power supply is connected to the ADQ-CDI-BB.

ALLNET® GmbH Computersysteme accepts no liability for damage resulting from improper use.

## 1.3 Installation and mounting

The module is intended for installation in measuring and test systems by qualified specialist personnel. The relevant installation regulations and standards must be observed and the module may only be used in dry rooms. Ensure sufficient heat dissipation. Ensure that the connection cables are securely connected. The installation must be carried out in such a way that the cables are not under tension, as otherwise they could come loose.

8 Introduction

ADQ-CDI-BB 1.5 Introduction

## 1.4 Brief description

The ADQ-CDI-BB control and measuring unit has been developed for control in test systems and for automation processes. The numerous digital inputs and outputs as well as analog inputs and relays easily cover most standard requirements. For further tasks, it is possible to set up project-specific HATs or connect further standard ALLDAQ extensions via the ADQ-Link.

This manual applies to the following hardware versions of the ADQ-CDI-BB:

• Rev. 2.5

#### Features:

- 8 digital inputs 24VDC with programmable input filter
- 1 switchable power measurement channel 30VDC with two switchable current measurement ranges 8mA and 10A
- 1 temperature measurement channel for various thermocouples with temperature-dependent programmable alarm outputs
- 8 relays for up to 30VDC / 6A (optionally interchangeable with small signal relays for digital and analog signals)
- 3 analog single inputs up to 48VDC
- 3 analog differential inputs ± 22, 796VDC
- Onboard temperature monitoring (programmable) with connection option for a 12V fan
- 1 ADQ-Link output for additional ALLDAQ peripherals such as relay board, load box or current sink
- Simple 24VDC power supply
- Numerous signal LEDs for easy commissioning and troubleshooting
- Onboard power supply unit up to 10A "Int. DUT voltage" adjustable via software
- Supply of an "Ext. UDUT voltage" 0-48V
- Slot for HAT1 (audio, digital inputs and outputs, analog inputs, I2C, voltage supply)
- Slot for HAT2 (ADQ-Link output, power supply, GPIO)
- Controllable with ADQ-Link (USB/PXIe) or various single board computers (SBC) such as Beagle Bone Black, RockPi X (I2C) etc.

Introduction 9

# 2. Overview of the system

## 2.1 Digital inputs and outputs

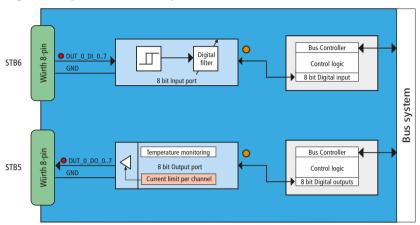



Figure 1: Blockschaltbild digitale Ein- und Ausgänge

#### 2.1.1 Digital inputs

The ADQ-CDI-BB has 1 digital input port with 8 bits. The inputs have a Schmitt trigger characteristic in accordance with IEC 61131-2 (Typee 1) and are designed for an input voltage of 24V. All inputs are equipped with status LEDs.

#### Digital input filter

To prevent unwanted effects caused by contact bounce, you can program a digital filter for each input port. Choose between the following values:

10 ms (N = 1248) / 3.2 ms (N = 400) / 1.0 ms (N = 125) / 10  $\mu s$  (bypass). The scan frequency is 100 kHz (Type.).

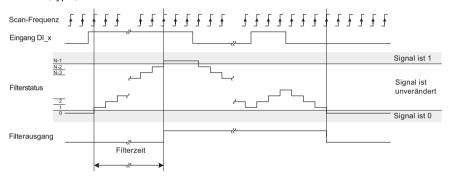



Figure 2: Digital input filter

#### Wiring

The isolated inputs have a Schmitt trigger characteristic in accordance with IEC 61131-2 (Typee 1) and are designed for the input high level UIH of Type. 24 V commonly used in control technology. Observe the following conditions:

- Threshold voltage L"H: > 15 V @ U\_IN = 24 V
- Threshold voltage H "L: < 11 V @ U\_IN = 24 V</li>
- Hysteresis: Type. 1 V

Please note that an earth connection must always be made from the external wiring to the reference earth of the isolated digital inputs (GND). The digital input section and the digital output section use GND together.

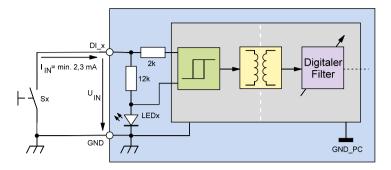



Figure 3: Wiring of the isolated digital inputs

#### 2.1.2 Digital outputs

The output voltage of the digital output is equal to the supply voltage U\_IN (24VDC). Up to 650mA can be driven per output. Several outputs can be connected in parallel to increase the output current. An earth reference to the external output circuit must be established via GND. The output stage offers comprehensive overload protection, short-circuit-proof outputs (current limitation per channel) and thermal overload protection with automatic restart. In the event of thermal overload (Type. 135°C), the respective channel switches off and switches back on automatically as soon as the junction temperature has dropped by 10°K.

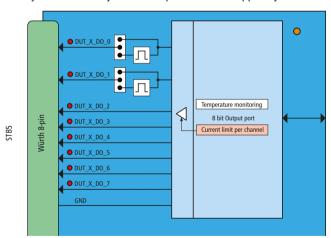



Figure 4: Digital output in detail

The first two outputs of each driver stage (DUT\_X\_DO\_\_0..1) can also be used in pulse mode in addition to normal operation. When the output is switched high (rising edge), the stage emits a high pulse of approx. 1 second. To do this, the jumpers DO\_0 / DO\_1 must be set to strobe accordingly.

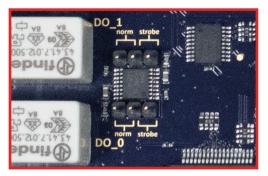
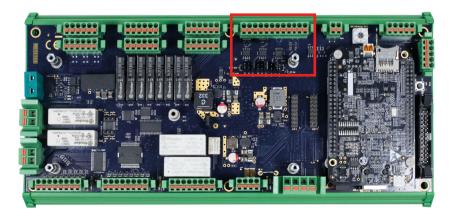



Figure 5: Jumper DO\_0 / DO\_1 Strobe



## 2.1.3 Jumper CAN/UART/I2C


Jumpers P3 and P4 are used to select the BUS Typee (CAN/UART/I2C) on the STB16. The BUS Typee is selected via the programming in the BeaglBoneBlack. Jumper P5 (V\_IO Sel) is used to define the signal level on the BUS Typee. Jumpers J6 and J7 can be used to terminate the BUS Typee CAN.

| Jumper | Pin (plugged) | Slot  | BUS-Typee                 |
|--------|---------------|-------|---------------------------|
| P3, P4 | Pin1, Pin2    | CAN 1 | CAN BUS connected STB16   |
| J6     | Pin1, Pin2    | CAN 1 | Terminating resistor 120R |
| J7     | Pin1, Pin2    | CAN 0 | Terminating resistor 120R |
| P3, P4 | Pin3, Pin4    | I2C   | I2C BUS connected STB16   |
| P3, P4 | Pin3, Pin4    | UART  | UART BUS connected STB16  |

| Jumper | Pin (plugged) | BUS signal level (VIO) |              |
|--------|---------------|------------------------|--------------|
| P5     | Pin1, Pin2    | 3,3V (intern)          | CAN/UART/I2C |
| P5     | Pin3, Pin4    | 5V (intern)            | CAN/UART/I2C |
| P5     | Pin5, Pin6    | 1,85V (extern)         | CAN/UART/I2C |



Figure 6: Jumper CAN/UART/I2C



#### 2.2 Power measurement channel

The ADQ-CDI-BB offers 1 independent power measurement channel, for example to switch 1 DUT and monitor the power consumption.

The internal DUT voltage max. 4.8-18.4VDC and the current up to max. 10A can be measured on the path. Measurements are made with 20 bit resolution and the recorded values can optionally be pre-processed (e.g. averaging).

In order to achieve the highest possible resolution for various standard measurement requirements such as quiescent current or maximum current consumption, there are two switchable current measurement ranges. These are Typeically 8mA and 10A.

As soon as the current becomes too high in the small current measuring range, the ADQ-CDI-BB automatically switches to the large measuring range without interruption.




Figure 7: Block diagram of power measurement channels

## 2.3 Temperature measuring channel

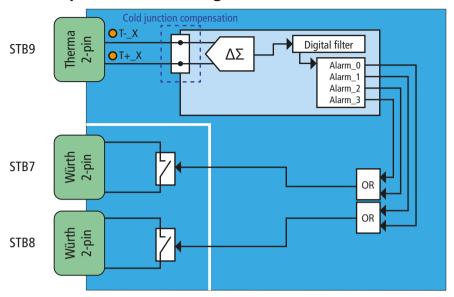



Figure 8: Block diagram of temperature measuring channel incl. alarm relay

The ADQ-CDI-BB has 1 independent temperature measurement channel with integrated cold junction compensation. A Typee K thermocouple can currently be connected to this channel via the CMJ connector Typee from Therma (DIN IEC 584). Several thermocouple Typees from Therma with different classifications are available. For further information, see www.thermagmbh.de. If you want to connect Typee J, T, N, E, S, B or R, please contact us. LEDs and the software indicate short circuits and cable breaks on the thermocouple.

The galvanic isolation between the thermocouple and the PC effectively suppresses interference.

Two alarm outputs can be configured independently of the system, which are triggered in hardware when defined threshold values are exceeded or not reached. For example, a fan, a heater or a signal tone can be switched on directly depending on the application (STB7/STB8).

#### **Alarms**

Up to four alarm thresholds with their own hysteresis can be set for each thermocouple. The alarms can be triggered when the thresholds are exceeded or undershot. Two alarms are always logically connected as an OR. This makes it easy to trigger more complex alarm scenarios. Two alarm outputs are therefore available on the connector for each thermocouple. Once configured, the alarms are active independently of the system bus. Even if the system hangs up or is fully utilized, the alarm outputs function reliably.

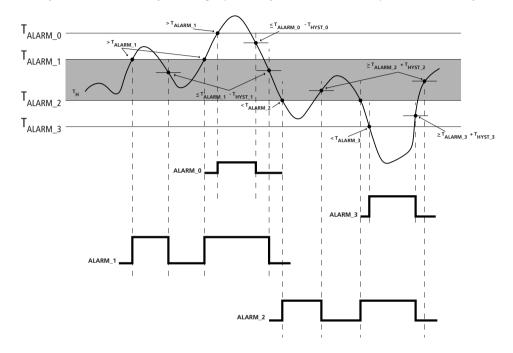



Figure 9: Alarm thresholds

## 2.4 Relay

- 8 power relays (SPDT) max. 30VDC/6A (default)
- 4 small signal relays (DPDT) max 30VDC/1A or 125VAC 0.3A (resistive); optional (on request)

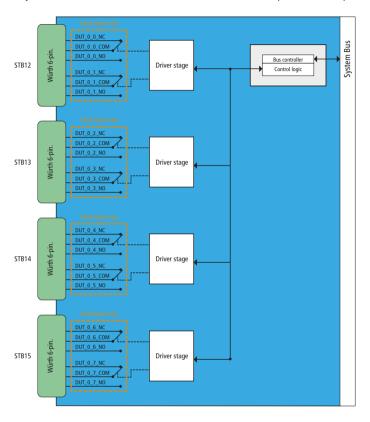



Figure 10: Relay block diagram

## 2.5 Analog inputs

A total of 6 analog inputs are available, 3x single-ended and 3x differential. With 20bit resolution and an input range up to 48VDC (single-ended) and  $\pm$  22.796VDC (differential), many measurement requirements can be met. To reduce the load on the system and the bus, measured values can already be averaged in the converter chip.

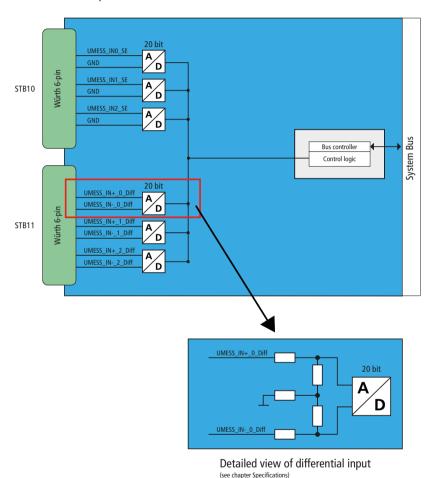



Figure 11: Block diagram of analog inputs

#### 2.6 Fan control

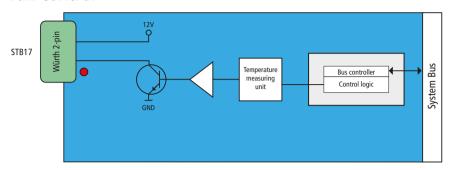



Figure 12: Fan control block diagram

The ADQ-CDI-BB is fitted with a temperature transducer that measures the temperature of the module. It is generally recommended to actively cool the module. The temperature transducer has a programmable fan output (12VDC/500mA). The hysteresis can be used to set different threshold values for switching the fan on and off.

### 2.7 ADQ-Link

Two ALLDAQ products can be reliably and easily connected and communication established via the ADQ link (point to point). Physically, there is a differential connection. This makes the ADQ-Link perfect for use in industrial environments. Even in compact control cabinets, where it is not always possible to maintain optimum cable routing and decoupling between power lines and analog or digital signal/control lines, the ADQ-Link works stably. The ADQ-Link connects two participants up to 100m without any loss of speed or robustness. For shorter distances, the power supply can also be looped from one subscriber to the other using the same cable. The longer the cable, the greater the displacement of the respective earth potentials. However, this is not a problem due to the capacitively insulated link cables.

As an alternative to the single board computer (BBB), the ADQ-CDI-BB can be controlled via an ADQ-Link input. An ADQ-Link output is also available. The system can also be easily expanded with a wide range of ALLDAQ peripherals. The standard modules include relay boards, current sinks or resistive loads. Additional project-specific hardware can also be connected.

## 2.8 Power supply

The entire module is supplied with a single 24VDC supply voltage (U\_IN STB1). Note: U\_IN also corresponds to the output voltage for the digital outputs.

In addition, the module offers external injection of the UDUT voltage (0-48V) at STB1.

#### 2.8.1 Voltages of the internal power supply units

In addition to the adjustable 4.8-18.4VDC/10A UDUT voltage, the ADQ-CDI-BB offers the user two further voltages of 5VDC and 12VDC.

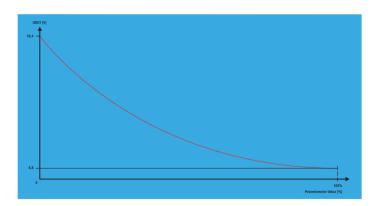



Figure 13: Curve UDUT voltage

The output voltages 5VDC, 12VDC and UDUT can be tapped via the STB2 connector.

## 3. Plug-on boards (HAT)

The ADQ-CDI-BB offers several options for expansion. Among other things, a total of 2 slots for expansion boards (HATs) are available directly on the module.

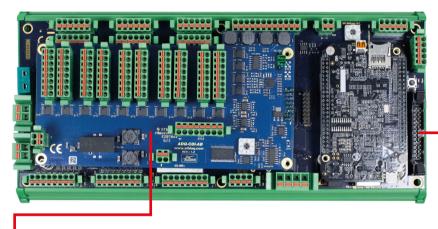



Figure 14: Position Erweiterungsplatinen (HATs)

## 3.1 HAT1 (e.g. ADQ-CDI-AB)

The ADQ-CDI-BB offers a slot for the HAT1. The dimensions are 160x75mm. In addition to the voltages, 5VDC and 12VDC, there is also the control bus (I2C, I2S).

#### 3.2 HAT2

There is a connector for a simple HAT. The input voltage (U\_IN), 5VDC and 12VDC and a further ADQ-Link-OUT are available at the connector provided for this purpose.

ADQ-CDI-BB 1.5 Control

## 4. Control

A standard I2C master can be used to control the ADQ-CDI-BB. This is available on the single-board computer (default). In addition, the ADQ-CDI-BB can be controlled via the STB18 connector (ADQ-Link-IN). If this connector is used to control the ADQ-CDI-BB via an ADQ link, the I2C is automatically switched away from the single-board computer.

#### **Rotary switch**

Use the rotary switch to determine the main address of the complete module. The address may only occur once on an ADQ link or I2C bus. This also applies to other peripherals. All ADQ-Link products have an adjustable rotary switch.

| Position | Address (7 bit) |
|----------|-----------------|
| 0        | 0x70            |
| 1        | 0x71            |
| 2        | 0x72            |
| 3        | 0x73            |
| 4        | 0x74            |
| 5        | 0x75            |
| 6        | 0x76            |
| 7        | reserved*       |

<sup>\*</sup>If reserved, an orange ERROR LED lights up.





Figure 15: Rotary switch

Control 23

Control ADQ-CDI-BB 1.5

## 4.1 ADQ-Link

For example, the ADQ-CDI-BB can be conveniently and reliably controlled via USB using an ADQ-153. The ADQ-Link is implemented via a twisted 2-wire cable.

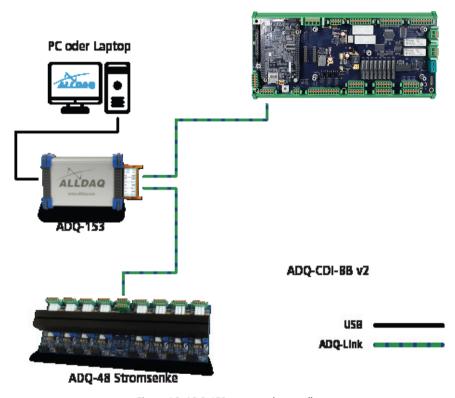



Figure 16: ADQ-153 as control controller

24 Control

ADQ-CDI-BB v2 1.3 Control

## 4.2 Single Board Computer



Figure 17: ADQ-CDI-BB mit Beagle Bone Black Einplatinen-Computer

To make the complete system as compact as possible, various single board computers can be used as control centers. The Beagle Bone Black can be mounted directly on the ADQ-CDI-BB. (see Figure 16)Adapter boards can be used to mount other single-board computers.

Control 25

Pin assignments ADQ-CDI-BB 1.5

# 5. Pin assignments

## 5.1 Position of the connectors/assignment

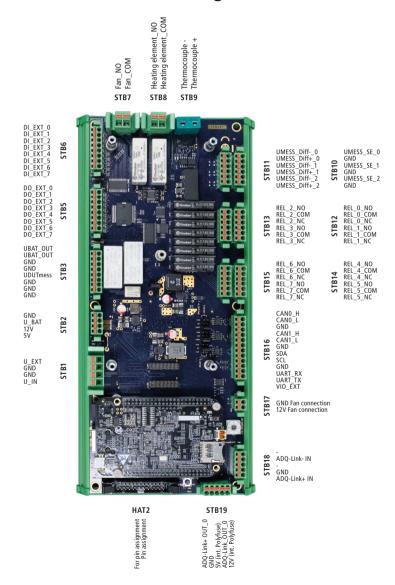



Figure 18: ADQ-CDI-BB with connector position/assignment

ADQ-CDI-BB 1.5 Pin assignments

## 5.2 Overview of connector Typees

### 5.2.1 Würth/Therma Typee

Connectors from the Therma/Würth 69130513.... series with different numbers of poles are used.

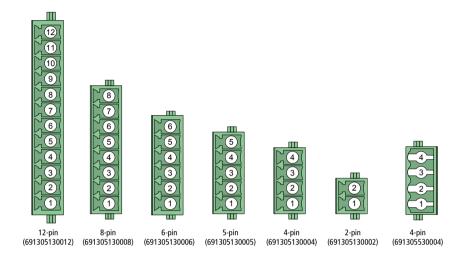
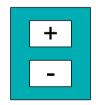




Figure 19: Würth baseboard Typee WR-TBL 3051 (top view)



2-pin (Therma: CMJ-KIPR-Green)

Figure 20: Thermocouple socket (top view)

Pin assignments ADQ-CDI-BB 1.5

#### 5.2.2 Typee male connector

5.2.3 10-pin and 5-pin pin headers are used to connect the baseboard and plug-in modules (pitch: 2.54 mm).

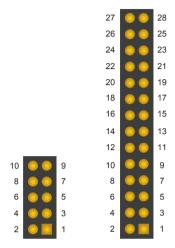



Figure 21: Male connector, 2.54mm (top view)

## 5.3 Pin assignment

STB19 - ADQ-Link OUT

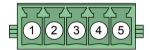



Figure 22: Würth 691305130005

| Pin | Assignment      | Description                                               |
|-----|-----------------|-----------------------------------------------------------|
| 1   | ADQ-Link+ OUT_0 | Positive ADQ-Link output (isolated)                       |
| 2   | GND             | Ground reference                                          |
| 3   | 5V              | Internal 5VDC (int. Polyfuse, Ihold 1.1A/ Itrip 5.5A)     |
| 4   | ADQ-Link- OUT_0 | Negative ADQ link output (isolated)                       |
| 5   | 12V             | Internal 12VDC (int. Polyfuse, Ihold 1.1A/ Itrip<br>5.5A) |

Tabelle 1: Pin assignment STB19

ADQ-CDI-BB 1.5 Pin assignments

### STB17 - Fan output



Figure 23: Würth 691305130002

| Pin | Assignment       | Description                       |
|-----|------------------|-----------------------------------|
| 1   | 12V (max. 500mA) | Positive connection for 12VDC fan |
| 2   | GND              | Negative connection for 12VDC fan |

Figure 24: Pin assignment STB17

### STB18 - ADQ-Link IN

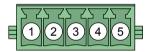



Figure 25: Würth 691305130005

| Pin | Assignment   | Description             |
|-----|--------------|-------------------------|
| 1   | ADQ-Link+ IN | Positive ADQ link input |
| 2   | GND          | Ground reference        |
| 3   | -            | not connected           |
| 4   | ADQ-Link- IN | Negative ADQ link input |
| 5   | -            | not connected           |

Tabelle 2: Pin assignment STB18

Pin assignments ADQ-CDI-BB 1.5

### STB1 - Supply voltage/external UDUT voltage

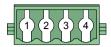



Figure 26: Würth 691305530004

| Pin | Assignment | Description                     |
|-----|------------|---------------------------------|
| 1   | U_IN       | ADQ-CDI-BB Supply voltage 24VDC |
| 2   | GND        | Ground reference                |
| 3   | GND        | Ground reference                |
| 4   | U_EXT      | External power supply DUT 0-48V |

Tabelle 3: Pin assignment STB1

#### STB16 - CAN/UART/I2C (TTL-Level)

Note: Do not apply any voltage to the I/O pins before the power supply is connected to the ADQ-CDI-BB.

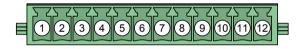



Figure 27: Würth 691305130012

| Pin | Assignment | Description                |
|-----|------------|----------------------------|
| 1   | VIO_EXT    | External power supply      |
| 2   | UART_TX    | Interface                  |
| 3   | UART_RX    | Interface                  |
| 4   | GND        | Digitaler Ground reference |
| 5   | SCL        | BeagleBone                 |
| 6   | SDA        | BeagleBone                 |
| 7   | GND        | Digitaler Ground reference |
| 8   | CAN1_L     | CAN-BUS                    |
| 9   | CAN1_H     | CAN-BUS                    |
| 10  | GND        | Digitaler Ground reference |
| 11  | CAN0_L     | CAN-BUS                    |
| 12  | CANO_H     | CAN-BUS                    |

Tabelle 4: Pin assignment STB16

ADQ-CDI-BB 1.5 Pin assignments

## STB5 - Digital outputs

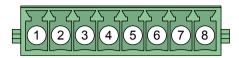



Figure 28: Würth 691305130008

| Pin | Assignment | Description       |
|-----|------------|-------------------|
| 1   | DO_EXT_7   | Digitaler Ausgang |
| 2   | DO_EXT_6   | Digitaler Ausgang |
| 3   | DO_EXT_5   | Digitaler Ausgang |
| 4   | DO_EXT_4   | Digitaler Ausgang |
| 5   | DO_EXT_3   | Digitaler Ausgang |
| 6   | DO_EXT_2   | Digitaler Ausgang |
| 7   | DO_EXT_1   | Digitaler Ausgang |
| 8   | DO_EXT_0   | Digitaler Ausgang |

Tabelle 5: Pin assignment STB5

## STB6 - Digital inputs

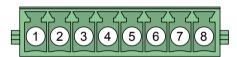



Figure 29: Würth 691305130008

| Pin | Assignment | Description   |
|-----|------------|---------------|
| 1   | DI_EXT_7   | Digital input |
| 2   | DI_EXT_6   | Digital input |
| 3   | DI_EXT_5   | Digital input |
| 4   | DI_EXT_4   | Digital input |
| 5   | DI_EXT_3   | Digital input |
| 6   | DI_EXT_2   | Digital input |
| 7   | DI_EXT_1   | Digital input |
| 8   | DI_EXT_0   | Digital input |

Tabelle 6: Pin assignment STB6

Pin assignments ADQ-CDI-BB 1.5

## STB12 - AUX relay

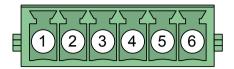



Figure 30: Würth 691305530006

| Pin | Assignment | Description                 |
|-----|------------|-----------------------------|
| 1   | REL_1_NC   | Closed contact of relay     |
| 2   | REL_1_COM  | Changeover contact of relay |
| 3   | REL_1_NO   | Open contact of relays      |
| 4   | REL_0_NC   | Closed contact of relay     |
| 5   | REL_0_COM  | Changeover contact of relay |
| 6   | REL_0_NO   | Open contact of relays      |

Tabelle 7: Pin assignment STB12

## STB13 - AUX relay

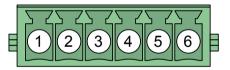



Figure 31: Würth 691305530006

| Pin | Assignment | Description                 |
|-----|------------|-----------------------------|
| 1   | REL_3_NC   | Closed contact of relay     |
| 2   | REL_3_COM  | Changeover contact of relay |
| 3   | REL_3_NO   | Open contact of relays      |
| 4   | REL_2_NC   | Closed contact of relay     |
| 5   | REL_2_COM  | Changeover contact of relay |
| 6   | REL_2_NO   | Open contact of relays      |

Tabelle 8: Pin assignment STB13

ADQ-CDI-BB 1.5 Pin assignments

## STB14 - AUX relay

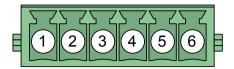



Figure 32: Würth 691305530006

| Pin | Assignment | Description                 |
|-----|------------|-----------------------------|
| 1   | REL_5_NC   | Closed contact of relay     |
| 2   | REL_5_COM  | Changeover contact of relay |
| 3   | REL_5_NO   | Open contact of relays      |
| 4   | REL_4_NC   | Closed contact of relay     |
| 5   | REL_4_COM  | Changeover contact of relay |
| 6   | REL_4_NO   | Open contact of relays      |

Tabelle 9: Pin assignment STB14

## STB15 - AUX relay

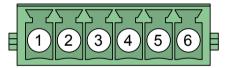



Figure 33: Würth 691305530006

| Pin | Assignment | Description                 |
|-----|------------|-----------------------------|
| 1   | REL_7_NC   | Closed contact of relay     |
| 2   | REL_7_COM  | Changeover contact of relay |
| 3   | REL_7_NO   | Open contact of relays      |
| 4   | REL_6_NC   | Closed contact of relay     |
| 5   | REL_6_COM  | Changeover contact of relay |
| 6   | REL_6_NO   | Open contact of relays      |

Tabelle 10: Pin assignment STB15

Pin assignments ADQ-CDI-BB 1.5

## STB2 - Voltage taps of the internal power supply units

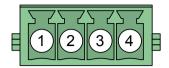



Figure 34: Würth 691305530004

| Pin | Assignment | Description                                                                    |
|-----|------------|--------------------------------------------------------------------------------|
| 1   | 5V         | Internal 5VDC (int. Polyfuse, I <sub>hold</sub> 1.1A/ I <sub>trip</sub> 5.5A)  |
| 2   | 12V        | Internal 12VDC (int. Polyfuse, I <sub>hold</sub> 1.1A/ I <sub>trip</sub> 5.5A) |
| 3   | U_BAT      | U_BAT                                                                          |
| 4   | GND        | Ground reference                                                               |

Tabelle 11: Pin assignment STB2

ADQ-CDI-BB 1.5 Pin assignments

## STB3 - Power measurement channels Output

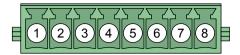
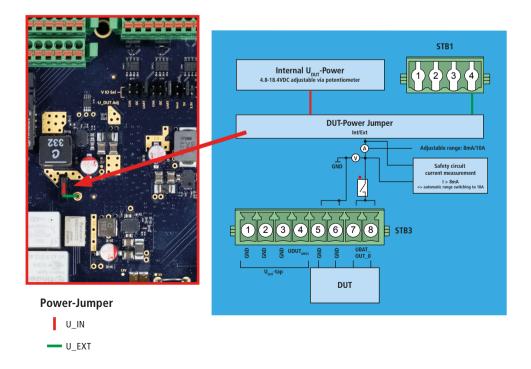




Figure 35: Würth 691305530008

| Pin | Assignment           | Description                   |
|-----|----------------------|-------------------------------|
| 1   | GND                  | Ground reference              |
| 2   | GND                  | Ground reference              |
| 3   | GND                  | Ground reference              |
| 4   | UDUT <sub>mess</sub> | Tap: Real test sample voltage |
| 5   | GND                  | Ground reference              |
| 6   | GND                  | Ground reference              |
| 7   | UBAT_OUT             | Output power measurement      |
| 8   | UBAT_OUT             | Output power measurement      |

Tabelle 12: Pin assignment STB3



Pin assignments ADQ-CDI-BB 1.5

## STB10 - Analog input

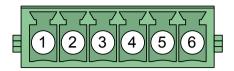



Figure 36: Würth 691305530006

| Pin | Assignment | Description      |
|-----|------------|------------------|
| 1   | GND        | Ground reference |
| 2   | UMESS_SE_2 | Analog input     |
| 3   | GND        | Ground reference |
| 4   | UMESS_SE_1 | Analog input     |
| 5   | GND        | Ground reference |
| 6   | UMESS_SE_0 | Analog input     |

<sup>\*</sup>SE (Single Ended)

Tabelle 13: Pin assignment STB10

## STB11 - Analog input

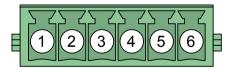



Figure 37: Würth 691305530006

| Pin | Assignment    | Description  |
|-----|---------------|--------------|
| 1   | UMESS_Diff+_2 | Analog input |
| 2   | UMESS_Diff2   | Analog input |
| 3   | UMESS_Diff+_1 | Analog input |
| 4   | UMESS_Diff1   | Analog input |
| 5   | UMESS_Diff+_0 | Analog input |
| 6   | UMESS_Diff0   | Analog input |

<sup>\*</sup>Diff (Differential Input)

Tabelle 14: Pin assignment STB11

ADQ-CDI-BB 1.5 Pin assignments

#### **STB9 - Thermocouples**



Figure 38: Therma CMJ-KIPR Green

| Pin | Assignment | Description               |
|-----|------------|---------------------------|
| 1   | -          | Thermocouple connection - |
| 2   | +          | Thermocouple connection + |

Tabelle 15: Pin assignment STB9

## STB7 - 230V/fan (potential-free switching contact)





(see chapter Safety instructions)

Figure 39: Würth 691305530002

| Pin | Assignment | Description                      |
|-----|------------|----------------------------------|
| 1   | Fan_NO     | Potential-free switching contact |
| 2   | Fan_COM    | Potential-free switching contact |

Tabelle 16: Pin assignment STB7

#### STB8 - 230V/Heizelement (potentialfreier Schaltkontakt)





(see chapter Safety instructions)

Figure 40: Würth 691305530002

| Pin | Assignment          | Description                      |
|-----|---------------------|----------------------------------|
| 1   | Heating element_NO  | Potential-free switching contact |
| 2   | Heating element_COM | Potential-free switching contact |

Tabelle 17: Pin assignment STB8

Pin assignments 37

Pin assignments ADQ-CDI-BB 1.5

#### HAT2



Figure 41: Stiftstecker HAT2

| Pin | Assignment | Description                                                   |
|-----|------------|---------------------------------------------------------------|
| 1   | 5V         | int. Polyfuse, I <sub>hold</sub> 1.1A/ I <sub>trip</sub> 5.5A |
| 2   | 12V        | int. Polyfuse, I <sub>hold</sub> 1.1A/ I <sub>trip</sub> 5.5A |
| 3   | U-IN       | Supply voltage 24VDC                                          |
| 4   | U-IN       | Supply voltage 24VDC                                          |
| 5   | GND        | Ground reference                                              |
| 6   | GND        | Ground reference                                              |
| 7   | GND        | Ground reference                                              |
| 8   | P8_7       | Beeagle Bone I/O                                              |
| 9   | P8_8       | Beeagle Bone I/O                                              |
| 10  | P8_9       | Beeagle Bone I/O                                              |
| 11  | P8_10      | Beeagle Bone I/O                                              |
| 12  | P8_11      | Beeagle Bone I/O                                              |
| 13  | P8_12      | Beeagle Bone I/O                                              |
| 14  | P8_13      | Beeagle Bone I/O                                              |
| 15  | P8_14      | Beeagle Bone I/O                                              |
| 16  | P8_15      | Beeagle Bone I/O                                              |
| 17  | P8_16      | Beeagle Bone I/O                                              |
| 18  | P8_19      | Beeagle Bone I/O                                              |
| 19  | GND        | Ground reference                                              |
| 20  | RX_4       | Beeagle Bone I/O                                              |
| 21  | GND        | Ground reference                                              |
| 22  | TX_4       | Beeagle Bone I/O                                              |
| 23  | GND        | Ground reference                                              |
| 24  | ADQ-Link   | Р                                                             |
| 25  | GND        | Ground reference                                              |
| 26  | ADQ-Link   | N                                                             |

Tabelle 18: Pin assignment HAT2

38 Pin assignments

# 6. Specifications

Conditions: TA = 25°C unless otherwise specified; warm-up time: 30 minutes.

#### General

| Element                                         | Condition                                        | Specification                                                                                              |
|-------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Control and signal processing                   | recommended                                      | ADQ-CDI-BB for analog and digital input/output,<br>and control via (I2C bus/Beagle Bone Black) or ADQ-Link |
| Supply                                          | STB1                                             | 24 V supply via Würth plug connector, ±24 V, ±10%<br>U_EXT (external power supply DUT 0-48V)               |
| Voltage taps of the internal power supply units | STB2                                             | Via Würth plug connector 5 V, 12 V, UBAT, ±10% (max. 1A per voltage)                                       |
| Quiescent current consumption                   | ADQ-CDI-BB/no relay<br>energized, without<br>SCB | 24 V Typee: 0,21A                                                                                          |
| Quiescent current consumption                   | ADQ-CDI-BB/no relay<br>energized, without<br>SCB | 24 V Typee: 0,296A                                                                                         |
| Fuses for switchable auxiliary voltages via     | +5 V                                             | Secured by Polyfuse<br>I <sub>hold</sub> 1.1A/ I <sub>trip</sub> 5.5A                                      |
| STB19, HAT2                                     | +12 V                                            | Secured by Polyfuse<br>I <sub>hold</sub> 1.1A/ I <sub>trip</sub> 5.5A                                      |
| Temperature range                               | Operating                                        | 060 °C (Standard)                                                                                          |
| Air humidity                                    | Operating                                        | 20%55% (non-condensing)                                                                                    |
| Dimensions                                      | ADQ-CDI-BB                                       | 270 x 135 x 55 mm Top-hat rail                                                                             |
| (W x D x H)                                     | ADQ-CDI-AB                                       | 160 x 75 x 30 mm Clip-on HAT                                                                               |
|                                                 | Total height                                     | 75 mm incl. top-hat rail                                                                                   |
| Warranty                                        |                                                  | 36 months                                                                                                  |

#### Analog IN/OUT ADQ-CDI-BB

#### Voltage-Channels

| Element                      | Condition | Specification                      |
|------------------------------|-----------|------------------------------------|
| Channels                     |           | 3 single-ended analog Inputs STB10 |
| ADC Full Scale Range<br>(FS) | 48V       | 48V                                |
| Resolution                   |           | LSB: 195,3125µV                    |
| Overall accuracy             | 0V-36V    | ±0,0112%FS (5,4mV)**               |
|                              | 0V-20,48V | ±0,0060%FS (2,9mV)**               |
|                              | 0V-10,24V | ±0,0029%FS (1,43mV)**              |
|                              | 0V-5,12V  | ±0,0026%FS (1,25mV)**              |
|                              | 0V-5,12V  | ±0,00149%FS (0,716mV)***           |
| Input Impedance              |           | Type: 1M                           |

<sup>\*\*</sup>High Speed Measurement, \*\*\*High Accuracy Mode

| Channels                     |         | 3 differential analoge Inputs STB11 |
|------------------------------|---------|-------------------------------------|
| ADC Full Scale Range<br>(FS) | 45,592V | 45,592V                             |
| Resolution                   |         | LSB: 78,125nV                       |
| Overall accuracy             | ±20,48V | ±1,346%FS (62mV)**                  |
|                              | ±10,24V | ±0,0267%FS (12,2mV)**               |
|                              | ±5,12V  | ±0,0267%FS (12,2mV)**               |
| Input Impedance              |         | Type: 3MΩ    100pF                  |

<sup>\*\*</sup>High Speed Measurement

#### **Current measurement channel**

| Channel                       |           | 1 Current measurement channel STB3 |
|-------------------------------|-----------|------------------------------------|
| ADC Full Scale Range<br>(FS1) | 8mΩ Shunt | 10A                                |
| Current Measurement<br>Input  | Range 10A | 010A                               |
| Resolution                    |           | LSB: 9,536µA                       |
| Overall accuracy              | Range 10A | ±0,05%FS1 (5mA)**                  |
| ADC Full Scale Range<br>(FS2) | 10Ω Shunt | 8mA                                |
| Current Measurement<br>Input  | Range 8mA | 08mA                               |
| Resolution                    |           | LSB: 7,629nA                       |

| Element                                 | Condition | Specification                                             |
|-----------------------------------------|-----------|-----------------------------------------------------------|
| Overall accuracy                        | 08mA      | ±0,1%FS2 (8μA)**                                          |
|                                         | 01mA      | ±0,1%FS2 (8µA)**                                          |
|                                         | 01mA      | ±0,02%FS2 (1,6μA)***                                      |
| Overload protection current measurement | 8mA Range | If I > 8mA the Hardware switch automatically to Range 10A |

<sup>\*\*</sup>High Speed Measurement, \*\*\*High Accuracy Mode

#### DUT-Voltage

| Channel                      |                         | 1 STB3         |
|------------------------------|-------------------------|----------------|
| ADC Full Scale Range<br>(FS) |                         | 48V            |
| Resolution                   |                         | LSB: 195,312μV |
| Overall accuracy             | 0V-48V (without<br>DUT) | TBD            |

<sup>\*\*</sup>High Speed Measurement

#### Small signal relay for ADQ-CDI-BB (optional)

| Element            | Condition     | Specification                    |
|--------------------|---------------|----------------------------------|
| Турее              |               | FTR-B3CA()Z Standard             |
| Number             |               | Up to 4 relays optional          |
| Contact Typee      |               | 2-pole changeover contact (DPDT) |
| Contact material   |               | Silver/nickel with gold plating  |
| Contact resistance | 1A/6VDC       | max. 75 mΩ at 1 A/6 VDC          |
| Switching time     | Response time | max. 3 ms                        |
|                    | Relapse time  | max. 3 ms                        |
| Switching cycles   | mechanical    | min. 50.000.000                  |

#### Relay Typee S34 on the ADQ-CDI-BB (for AUX relay)

| Element               | Condition     | Specification                                                                                                    |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------|
| Number/Typee          |               | 8 changeover relays (SPDT), Typee: Finder Series 34                                                              |
| Contact material      |               | Silver/nickel                                                                                                    |
| Switching time        | Response time | max. 5 ms                                                                                                        |
|                       | Relapse time  | max. 3 ms                                                                                                        |
| Switching cycles      | mechanical    | min. 10.000.000                                                                                                  |
| Switching current DC1 |               | max. 6 A / 30 VDC                                                                                                |
| Min. switching load   | mW (V/mA)     | 500mW (12V/10mA) must not be undercut, with a minimum current of 21mA at 24V or a minimum voltage of 50V at 10mA |
| Connection            |               | STB1215                                                                                                          |

#### Relay Typee 43.11 on the ADQ-CDI-BB (for heating element/fan)

| Element                            | Condition               | Specification                                          |
|------------------------------------|-------------------------|--------------------------------------------------------|
| Number/Type                        |                         | 2 changeover relays (SPDT), Typee: Finder Series 43.11 |
| Contact material                   | Response time           | max. 6 ms                                              |
| Switching time                     | Relapse time            | max. 3 ms                                              |
| Switching cycles                   | mechanical              | min. 10.000.000                                        |
| Elektrische Lebensdau-<br>er AC/DC |                         | min. 10.000.00                                         |
| Switching current DC1              | 30/110/220V             | 10/0.3/0.12A                                           |
| Switching current AC1              | Max. switching capacity | 2500VA                                                 |
| Min. switching load                | mW (V/mA)               | 300mW (5V/5mA) must not be undershot                   |
| Connection                         |                         | STB7 / STB8                                            |

## Isolated digital inputs via ADQ-CDI-BB

| Element                                   | Condition | Specification                                                                                                  |
|-------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------|
| Number                                    |           | 1 x 8 bit digital input port via STB6                                                                          |
| Туре                                      |           | Isolierte Digital-Eingänge (unidirektional) mit Schmitt-Trig-<br>ger-Charakteristik gemäß IEC 61131-2 (Type 1) |
| Isolated digital inputs<br>via ADQ-CDI-BB | U_IN      | 24 VDC for control technology                                                                                  |
| Ground reference                          |           | GND                                                                                                            |

## Isolated digital outputs via ADQ-CDI-BB

| Element          | Condition | Specification                                                                      |
|------------------|-----------|------------------------------------------------------------------------------------|
| Number           |           | 1 x 8 bit digital output port via STB5                                             |
| Туре             |           | Isolated digital outputs (unidirectional) in accordance with IEC 61131-2 (Typee 1) |
| Supply           | U_IN      | 24 VDC für Steuerungstechnik                                                       |
| Ground reference |           | 24 VDC for control technology                                                      |

## Thermocouple input ADQ-CDI-BB

| Element      | Condition                  | Specification                                                      |
|--------------|----------------------------|--------------------------------------------------------------------|
| Ports        | STB9                       | 1 channel for thermocouple, 2 alarm outputs                        |
| Thermocouple | Туре                       | K according to NIST ITS-90 with integrated                         |
|              | Accuracy<br>(ADQ-CDI-BB)   | Typical 1.5°C (max. 2°C)                                           |
|              | Accuracy<br>(Thermocouple) | Depending on the selected thermocouple (www.thermagmbh.de)         |
|              | Total<br>Accuracy          | Accuracy (ADQ-CDi-BB) + (Thermocouple)                             |
|              | Resolution                 | 12, 14, 16, 18bit                                                  |
|              | Selection interval         | 330ms (max.)                                                       |
|              | Filter                     | digital IIR bzw. EMA                                               |
|              | Fehlererkennung            | Short circuit and open circuit (SC-OC LED display)                 |
| Alarm output | Туре                       | Relay switching outputs STB7, STB8<br>(see relay type 43.11 table) |

#### ADQ-Link I2C (HAT2)

| Element  | Condition | Specification |
|----------|-----------|---------------|
| Frequenz |           | 100kHz        |

## ADQ-Link Input STB18

| Element      | Condition      | Specification |
|--------------|----------------|---------------|
| Frequenz     |                | 100kHz        |
| Isolation    | ADQ-LINK+/-    | 50VDC         |
| Cable length | 2-core twisted | max. 100m     |

#### ADQ-Link Out STB19

| Element      | Condition      | Specification                                                         |
|--------------|----------------|-----------------------------------------------------------------------|
| Frequenz     |                | 100kHz                                                                |
| Isolation    | ADQ-LINK+/-    | 50VDC                                                                 |
| Cable length | 2-core twisted | max. 100m                                                             |
| Тар          | +5V (Pin 3)    | Secured by Polyfuse<br>I <sub>hold</sub> 1.1A/ I <sub>trip</sub> 5.5A |
|              | +12V (Pin 5)   | Secured by Polyfuse<br>I <sub>hold</sub> 1.1A/ I <sub>trip</sub> 5.5A |

#### STB16

| Element | Condition            | Specification                                                                                                                                                                                                                 |
|---------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VIO     | BUS signal level     | 3.35V (see 2.1.3 Jumper CAN/UART/I2C)                                                                                                                                                                                         |
| CAN 0/1 | IOs                  | see programming GPIOs in the Beagle Bone Black manual                                                                                                                                                                         |
|         | V <sub>IH</sub>      | HIGH-level input voltage 0,7xVIO                                                                                                                                                                                              |
|         | V <sub>IL</sub>      | LOW-level input voltage 0,3xVIO                                                                                                                                                                                               |
| UART    | IOs                  | see programming GPIOs in the Beagle Bone Black manual                                                                                                                                                                         |
|         | V <sub>IH</sub>      | 33,6VIO (min. 2V)                                                                                                                                                                                                             |
|         | V <sub>IH</sub>      | 4,55VIO (min. 0,7x5V)                                                                                                                                                                                                         |
|         | V <sub>IL</sub>      | 33,6VIO (max. 0,8V)                                                                                                                                                                                                           |
|         | V <sub>IL</sub>      | 4,55VIO (min. 0,3x5V)                                                                                                                                                                                                         |
| I2C     | IOs                  | see programming GPIOs in the Beagle Bone Black manual                                                                                                                                                                         |
|         | V <sub>IH</sub>      | min. 0,7xVIO                                                                                                                                                                                                                  |
|         | V <sub>IL</sub>      | min. 0,3xVIO                                                                                                                                                                                                                  |
|         | ry. You can also use | tted. You must provide your own pull-up resistor on your periphe-<br>the pull-up resistors on your periphery as voltage shifting.<br>culating the pull-up resistors, the total power must not exceed<br>,, use an I2C buffer. |

ADQ-CDI-BB 1.5 Appendix

## 7. Appendix

## 7.1 Manufacturer and support

ALLNET® is a registered trademark of ALLNET® GmbH Computersysteme. If you have any questions, problems or require product information of any kind, please contact the manufacturer directly:

#### **ALLNET®** GmbH Computersysteme

Division ALLDAQ

Maistrasse 2 D-82110 Germering

E-Mail: support@alldaq.com
Phone: +49 (0)89 894 222 – 474
Fax: +49 (0)89 894 222 – 33
Internet: www.alldaq.com

## 7.2 Important notes

#### 7.2.1 Packaging Ordinance

"In principle, manufacturers and distributors are obliged to ensure that sales packaging is taken back by the end consumer after use and reused or recycled." (according to § 4 sentence 1 of the Packaging Ordinance). If you as a customer have any problems with the disposal of packaging and shipping materials, please send an e-mail to info@allnet.de

## 7.2.2 Recycling notice and RoHS conformity



Please note that parts of ALLNET® GmbH products should be disposed of at recycling centers or may not be disposed of with household waste (circuit boards, power supply unit, etc.).



ALLNET® products are manufactured in compliance with RoHS (Restriction of the use of certain hazardous substances).

#### 7.2.3 CE marking

The ADQ-CDI-BB bears the CE marking.



This device complies with the requirements of EU Directive 2004/108/EC, Electromagnetic Compatibility Directive and the mutual recognition of their conformity. Conformity with the above directive is confirmed by the CE mark on the device.

Appendix 47

Appendix ADQ-CDI-BB 1.5

#### 7.2.4 Warranty

Within the warranty period, we will rectify manufacturing and material defects free of charge. You can find the warranty conditions valid for your country on the homepage of your distributor. If you have any questions or problems with the application, you can reach us during our normal opening hours on the following telephone number +49 (0)89 894 222 - 474 or by e-mail to:

support@alldaq.com.

48 Appendix



## ALLNET® GmbH Computersysteme

Division ALLDAQ Maistrasse 2 D-82110 Germering

E-Mail: support@alldaq.com
Phone: +49 (0)89 894 222 - 474
Fax: +49 (0)89 894 222 - 33
Internet: www.alldaq.com

